37 research outputs found

    Learning to detect dysarthria from raw speech

    Full text link
    Speech classifiers of paralinguistic traits traditionally learn from diverse hand-crafted low-level features, by selecting the relevant information for the task at hand. We explore an alternative to this selection, by learning jointly the classifier, and the feature extraction. Recent work on speech recognition has shown improved performance over speech features by learning from the waveform. We extend this approach to paralinguistic classification and propose a neural network that can learn a filterbank, a normalization factor and a compression power from the raw speech, jointly with the rest of the architecture. We apply this model to dysarthria detection from sentence-level audio recordings. Starting from a strong attention-based baseline on which mel-filterbanks outperform standard low-level descriptors, we show that learning the filters or the normalization and compression improves over fixed features by 10% absolute accuracy. We also observe a gain over OpenSmile features by learning jointly the feature extraction, the normalization, and the compression factor with the architecture. This constitutes a first attempt at learning jointly all these operations from raw audio for a speech classification task.Comment: 5 pages, 3 figures, submitted to ICASS

    Learning weakly supervised multimodal phoneme embeddings

    Full text link
    Recent works have explored deep architectures for learning multimodal speech representation (e.g. audio and images, articulation and audio) in a supervised way. Here we investigate the role of combining different speech modalities, i.e. audio and visual information representing the lips movements, in a weakly supervised way using Siamese networks and lexical same-different side information. In particular, we ask whether one modality can benefit from the other to provide a richer representation for phone recognition in a weakly supervised setting. We introduce mono-task and multi-task methods for merging speech and visual modalities for phone recognition. The mono-task learning consists in applying a Siamese network on the concatenation of the two modalities, while the multi-task learning receives several different combinations of modalities at train time. We show that multi-task learning enhances discriminability for visual and multimodal inputs while minimally impacting auditory inputs. Furthermore, we present a qualitative analysis of the obtained phone embeddings, and show that cross-modal visual input can improve the discriminability of phonological features which are visually discernable (rounding, open/close, labial place of articulation), resulting in representations that are closer to abstract linguistic features than those based on audio only

    DNArch: Learning Convolutional Neural Architectures by Backpropagation

    Full text link
    We present Differentiable Neural Architectures (DNArch), a method that jointly learns the weights and the architecture of Convolutional Neural Networks (CNNs) by backpropagation. In particular, DNArch allows learning (i) the size of convolutional kernels at each layer, (ii) the number of channels at each layer, (iii) the position and values of downsampling layers, and (iv) the depth of the network. To this end, DNArch views neural architectures as continuous multidimensional entities, and uses learnable differentiable masks along each dimension to control their size. Unlike existing methods, DNArch is not limited to a predefined set of possible neural components, but instead it is able to discover entire CNN architectures across all feasible combinations of kernel sizes, widths, depths and downsampling. Empirically, DNArch finds performant CNN architectures for several classification and dense prediction tasks on sequential and image data. When combined with a loss term that controls the network complexity, DNArch constrains its search to architectures that respect a predefined computational budget during training

    Fader Networks: Manipulating Images by Sliding Attributes

    Get PDF
    This paper introduces a new encoder-decoder architecture that is trained to reconstruct images by disentangling the salient information of the image and the values of attributes directly in the latent space. As a result, after training, our model can generate different realistic versions of an input image by varying the attribute values. By using continuous attribute values, we can choose how much a specific attribute is perceivable in the generated image. This property could allow for applications where users can modify an image using sliding knobs, like faders on a mixing console, to change the facial expression of a portrait, or to update the color of some objects. Compared to the state-of-the-art which mostly relies on training adversarial networks in pixel space by altering attribute values at train time, our approach results in much simpler training schemes and nicely scales to multiple attributes. We present evidence that our model can significantly change the perceived value of the attributes while preserving the naturalness of images.Comment: NIPS 201
    corecore